Protecting axonal degeneration by increasing nicotinamide adenine dinucleotide levels in experimental autoimmune encephalomyelitis models.
نویسندگان
چکیده
Axonal damage is a major morphological alteration in the CNS of patients with multiple sclerosis (MS) and its animal model, experimental autoimmune encephalomyelitis (EAE). However, the underlying mechanism for the axonal damage associated with MS/EAE and its contribution to the clinical symptoms remain unclear. The expression of a fusion protein, named "Wallerian degeneration slow" (Wld(S)), can protect axons from degeneration, likely through a beta-nicotinamide adenine dinucleotide (NAD)-dependent mechanism. In this study, we find that, when induced with EAE, Wld(S) mice showed a modest attenuation of behavioral deficits and axon loss, suggesting that EAE-associated axon damage may occur by a mechanism similar to Wallerian degeneration. Furthermore, nicotinamide (NAm), an NAD biosynthesis precursor, profoundly prevents the degeneration of demyelinated axons and improves the behavioral deficits in EAE models. Finally, we demonstrate that delayed NAm treatment is also beneficial to EAE models, pointing to the therapeutic potential of NAm as a protective agent for EAE and perhaps MS patients.
منابع مشابه
Axonal and cell body protection by nicotinamide adenine dinucleotide in tumor necrosis factor-induced optic neuropathy.
Axonal degeneration often leads to the death of neuronal cell bodies. Previous studies have demonstrated the crucial role of nicotinamide adenine dinucleotide (NAD) biosynthesis in axonal protection of motor neurons, but the role of nicotinamide mononucleotide adenylyltransferase 1 and NAD in optic nerve degeneration is unclear. Intravitreal injection of tumor necrosis factor (TNF) induces opti...
متن کاملNicotinamide mononucleotide adenylyl transferase-mediated axonal protection requires enzymatic activity but not increased levels of neuronal nicotinamide adenine dinucleotide.
Axonal degeneration is a hallmark of many neurological disorders. Studies in animal models of neurodegenerative diseases indicate that axonal degeneration is an early event in the disease process, and delaying this process can lead to decreased progression of the disease and survival extension. Overexpression of the Wallerian degeneration slow (Wld(s)) protein can delay axonal degeneration init...
متن کاملA local mechanism mediates NAD-dependent protection of axon degeneration
Axon degeneration occurs frequently in neurodegenerative diseases and peripheral neuropathies. Important insight into the mechanisms of axon degeneration arose from findings that the degeneration of transected axons is delayed in Wallerian degeneration slow (Wlds) mice with the overexpression of a fusion protein with the nicotinamide adenine dinucleotide (NAD) synthetic enzyme, nicotinamide mon...
متن کاملMolecular chaperones protect against JNK- and Nmnat-regulated axon degeneration in Drosophila.
Axon degeneration is observed at the early stages of many neurodegenerative conditions and this often leads to subsequent neuronal loss. We previously showed that inactivating the c-Jun N-terminal kinase (JNK) pathway leads to axon degeneration in Drosophila mushroom body (MB) neurons. To understand this process, we screened candidate suppressor genes and found that the Wallerian degeneration s...
متن کاملNicotinamide mononucleotide adenylyltransferase expression in mitochondrial matrix delays Wallerian degeneration.
Studies of naturally occurring mutant mice, wld(s), showing delayed Wallerian degeneration phenotype, suggest that axonal degeneration is an active process. We previously showed that increased nicotinamide adenine dinucleotide (NAD)-synthesizing activity by overexpression of nicotinamide mononucleotide adenylyltransferase (NMNAT) is the essential component of the Wld(s) protein, the expression ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 26 38 شماره
صفحات -
تاریخ انتشار 2006